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Abstract

The objective of this article is to delve into the intricate dynamics of marriage relationships,
exploring the impact of emotions such as fear, love, financial considerations and likability. In
our investigation, we adopt a perspective that acknowledges the nonlinear nature of interac-
tions among individuals. Diverging from certain prior studies, we propose that the fear element
within the context of marriage is not a singular, isolated factor but rather a manifestation result-
ing from the amalgamation of numerous social issues. This, in turn, contributes to the emergence
of strained and unsuccessful relationships. Unlike conventional approaches, we extensively ex-
amine the conditions essential for the existence of all socially significant equilibrium points. A
meticulous analysis is undertaken to elucidate the local and global dynamics of the model in
the proximity of these equilibrium points. Furthermore, we explore the nuanced interplay be-
tween fear, love, money and likability, emphasizing the sensitivity of marriage relationships to
changes in the rates of these factors. The outcomes of such variations yield a spectrum of intrigu-
ing results within the proposed model, adding depth to our understanding of the complexities
inherent in the dynamics of marital relationships.
Keywords: social modeling; marriage; divorce; fear factor; stability analysis; bifurcation analy-

sis.
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1 Introduction

The utilization of mathematical models has experienced a notable surge due to the escalat-
ing demand for problem-solving across diverse fields such as ecology, biology, chemistry, physics
and sociology. Consequently, within the realms of ecology and evolutionary biology over the past
few decades, numerous scholars have dedicated their efforts to investigating intricate phenom-
ena such as prey predator interactions and the spread of epidemic diseases. In these contexts,
mathematical models have played an instrumental role in significantly advancing our compre-
hension of the complexities inherent in these challenging scenarios. In the discipline of ecology,
the examination of ecological dynamics has become increasingly reliant on mathematical model-
ing techniques. Researchers have delved into the intricacies of prey-predator interactions, seeking
to unveil the underlying principles that govern the relationships between species in ecosystems.
Through the employment of sophisticated mathematical models, these studies have not only elu-
cidated the dynamics of predator-prey systems but have also provided valuable insights into the
factors influencing population fluctuations and problems that affect the community stability, such
as the spread of epidemic diseases. Formore information, see: [5], [10], [14]. Similarly, within the
domain of evolutionary biology, mathematical modeling has proven indispensable in deciphering
themechanisms that drive the evolution of species over time. The exploration of adaptation, natu-
ral selection and genetic drift has been facilitated by the application of mathematical frameworks,
enabling researchers to simulate and analyze evolutionary processes with a level of precision that
extends beyond traditional observational methods [9]. Moreover, the realm of epidemiology has
witnessed a paradigm shift with the increasing reliance on mathematical models to comprehend
the dynamics of infectious diseases. The spread and control of epidemics, including factors such
as transmission rates, incubation periods and intervention strategies, have been rigorously inves-
tigated through mathematical modeling. These models not only contribute to our understanding
of disease dynamics but also play a pivotal role in informing public health policies and interven-
tions [15]. In essence, the interdisciplinary application of mathematical models has emerged as
an indispensable tool for gaining deeper insights into complex ecological, biological, chemical,
physical and social phenomena. The symbiotic relationship between mathematical modeling and
scientific inquiry continues to foster a more nuanced and comprehensive understanding of the
intricate dynamics that govern the natural world.

In the nascent years of the Nineteenth Century, Gottman purportedly harnessed the power
of mathematical models to explicate the intricate patterns inherent in marital relationships. This
innovative approach aimed to imbue simulations with a heightened degree of realistic accuracy.
The model was meticulously crafted to encapsulate a multifaceted array of factors, including the
introduction of a fear factor and the representation of failed relationships. Gottman’s pioneering
work in this domain marked a paradigm shift, paving the way for a quantitative understand-
ing of the dynamics that underpin the complexities of marital interactions [4]. To delve into the
essence of this mathematical modeling endeavor, it is imperative to highlight the incorporation
of a fear factor. This parameter reflects the nuanced emotional states within a marriage, encom-
passing elements such as anxiety, apprehension and emotional distress. By integrating this di-
mension into the model, Gottman sought to capture the intricate interplay of emotions that can
profoundly influence the trajectory of marital relationships. The inclusion of the fear factor ele-
vates the model beyond a simplistic representation, allowing for a more nuanced exploration of
the emotional landscape within the context of matrimony [11]. Furthermore, the explicit consid-
eration of failed relationships within the mathematical framework attests to the comprehensive
nature of Gottman’s approach. By acknowledging and modeling the potential for relationship
breakdowns, the model not only reflects the inherent uncertainties within the marital landscape
but also serves as a tool for predicting and understanding the factors that contribute to such out-
comes. This foresight into the dynamics of failed relationships is invaluable for both theoretical
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advancements and practical applications, such as counseling and relationship interventions [13],
[16]. To elucidate the foundational concept, it is imperative to definemarriage asmore than amere
social construct. Marriage is a culturally and often legally recognized union between individuals
referred to as spouses. It establishes a complex web of rights and obligations not only between the
spouses themselves but also extending to encompass their relationships with offspring [17] and
[6]. This definition underscores the multifaceted nature of marriage, acknowledging its legal, cul-
tural and familial dimensions. In summary, Gottman’s utilization of mathematical models in the
analysis of marriage dynamics represents a pioneering venture into the quantitative exploration
of complex human relationships. By integrating factors such as the fear factor and the prospect of
relationship failure, this approach offers a more nuanced and realistic portrayal of the intricate in-
terplay of emotions and circumstances within the institution of marriage. Moreover, the definition
of marriage as a legally and culturally recognized union underscores the intricate web of rights
and obligations that bind individuals in marital relationships, emphasizing the interdisciplinary
nature of such inquiries.

In pursuit of enhancing marital outcomes, a multitude of scholarly investigations into mar-
riage relationships and associated social phenomena have been undertaken. Ahmed and Khazali
[1] have contributed to this discourse by introducing a fractional order love model, seeking to elu-
cidate the dynamics that govern romantic relationships. This fractional order model represents an
innovative attempt to capture the nuanced and fractional nature of emotional connections, thereby
offering a more refined perspective on the intricacies of love within the context of marriage. In a
related vein, Kumar et al. [8] embarked on a mathematical modeling endeavor centered on the
legendary love story of Layla andMajnun. By employingmathematical frameworks, they endeav-
ored to dissect the dynamics of this renowned love narrative, providing a unique lens through
which to explore the complexities inherent in romantic relationships. This modeling approach
not only adds depth to our understanding of love but also showcases the versatility of mathe-
matical tools in interpreting cultural and literary phenomena within the realm of interpersonal
dynamics.

Expanding on the exploration of iconic love stories, Jafari et al. [7] delved into the intricacies
of the Layla and Majnun saga through a rigorous study. Their work contributes to the interdisci-
plinary landscape by employing mathematical methodologies to analyze the dynamics of a com-
plex love narrative, shedding light on the patterns and behaviors that characterize such emotion-
ally charged relationships. Shifting the focus to marriage dissolution, Tessema et al.[18] proposed
a mathematical model aimed at understanding the dynamics of marriage divorce. This modeling
effort not only advances our theoretical grasp ofmarital challenges but also provides a quantitative
framework for exploring the factors that contribute to the breakdown of marital unions. In a pre-
dictive vein, Duato and Odar [2] undertook the task of proposing and analyzing a mathematical
model for divorce propagation. This model not only allows for the estimation of future divorced
populations but also facilitates a systematic exploration of the factors influencing the spread of
divorces within a population. Such predictive modeling contributes to a more proactive approach
in addressing societal challenges related to marital dissolution. Lastly, Gambrah and Adzadu [3]
introduced a nonlinearmathematicalmodel to study the dynamics of divorce epidemics inGhana.
This innovative approach expands the scope of inquiry by considering the nonlinear interactions
amongmarried, separated and divorced individuals, providing a comprehensive view of the soci-
etal dynamics surrounding divorce. In essence, these scientific endeavors underscore the diverse
applications of mathematical modeling in unraveling the intricacies of romantic relationships and
marriage. From fractional order love models to analysis of iconic love stories and the dynamics of
divorce epidemics, these studies collectively contribute to a richer understanding of the complex
interplay of emotions and societal factors within the institution of marriage.

The primary aimof this investigation is to advance our understanding of the dynamics inherent
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in the social relations of human populations through the development of an innovativemathemat-
ical model. This model seeks to provide a more comprehensive depiction of these dynamics by
incorporating various influential factors, including fear, love, age and the level of understanding
between male and female individuals. The multifaceted nature of human social interactions ne-
cessitates a nuanced mathematical framework that accounts for these diverse elements, thereby
enriching our ability to model and analyze complex societal dynamics.

The structural framework of this study unfolds as follows: Sections 2 and 3 are dedicated to
the formulation of the mathematical model and the exploration of equilibrium points within its
dynamics, respectively. In Section 4, a rigorous mathematical analysis is employed to establish
stability results for the proposed model. This analytical process allows us to discern the inherent
stability or instability of the system, shedding light on the long-term behaviors of the social rela-
tions under consideration. Moving beyond theoretical foundations, Section 5 delves into the prac-
tical implications of our main results by presenting various applications of the developed model.
These applications serve to illustrate the real-world relevance of our mathematical framework,
demonstrating its potential utility in interpreting and predicting specific aspects of human social
dynamics. By grounding our findings in practical scenarios, we aim to bridge the gap between
theoretical abstraction and tangible societal phenomena. Finally, in Section 6, we encapsulate our
findings and their implications in a conclusive manner. Section 7 provides a synthesis of the key
insights gleaned from the mathematical model, discusses the broader implications of our results
and suggests avenues for future research endeavors. By systematically presenting our study in
this structured format, we aim to offer a comprehensive exploration of the dynamics of social re-
lations within human populations, providing both theoretical depth and practical applicability to
our findings.

2 Model Formulation

In this section, the marriage model is formulated mathematically using a three non-linear or-
dinary differential equations for describing the model. The model has had three compartments
describing how the population distribution of the three species with time. The diagram in Figure 1
and the model equations are as follows:

dM

dt
= rM

(
1− M

K

)
− α1MF

1 + nG
+

βG

2
− µM, M(0) ≥ 0,

dF

dt
= sF

(
1− F

K

)
− α2MF

1 + nG
+

βG

2
− µF, F (0) ≥ 0,

dG

dt
=

α3MF

1 + nG
− βG− γG, G(0) ≥ 0.

(1)

Here,M(t), F (t) and G(t) represent the densities at time t for the male single individuals, female
single individuals and married individuals respectively. It is assumed that males and females
grows logistically. Also, it is possible that the marriage is affected by the fear factor. Accordingly,
the parameters can be described as in Table 1.
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Figure 1: Diagram of marriage model.

Table 1: Definitions of model parameters.

Parameter Biological Meaning
r The growth rate of male
s The growth rate of female
β The failure marriage rate
K The carrying capacity
n The fear rate from marriage

αi, i = 1, 2, 3 The marriage rates with α3 ≤ min {α1, α2}
µ The death rate
γ The decay rate

M(0), F (0) and G(0) The initial point

3 The Invariant Region and Equilibrium of Model (1)

Let us determine a region in which the solution of model (1) is bounded. For this model
consider a new variable N = M + F +G, then by adding all equations of (1), N satisfies:

dN

dt
=

dM

dt
+

dN

dt
+

dG

dt
= rM

(
1− M

K

)
+ sF

(
1− F

K

)
−
(
α1 + α2 − α3

) MF

1 + nG
− q
(
M + F +G

)
,

where q = min {µ, γ} . If there is no marriage, we get

dN

dt
≤ (r + s)K

4
− qN. (2)
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After solving Equation (2) and evaluating it as t → ∞, we got

ℜ =

{
(M,F,G) ∈ R3

+ : N(t) ≤ (r + s)K

4q

}
,

which is the feasible solution set for the model (1) and all the solutions of the model are bounded.
Next, the existence of all various equilibrium points (EPs), are considered in following;

• Firstly, if F = G = 0, then model (1) has the single males equilibrium point (SMEP), which
is denotedW1 = (M1, 0, 0) = ((r−µ)K/r, 0, 0), exits under µ < r is the biological condition.

• Secondly, if M = G = 0, this equilibrium point known as single females equilibrium point
(SFEP), which is denoted byW2 = (0, F2, 0) = (0, (s−µ)K/s, 0), exits uniquely under µ < s
is the biological condition.

• Thirdly, if G = 0 this equilibrium point known as marriage-free equilibrium point (MFEP)
that is denoted by W3 = (M3, F3, 0), exits uniquely under the following conditions:

rM + µK < rK,

rs < α1α2K
2,

rs+ µα1K < s(α1K + µ),

(3)

where

M3 =
K
[
s(α1K + µ)− es+ µα1K

]
α1α2K2 − rs

,

F3 =
rK − rM3 − µK

α1K
.

(4)

• Lastly, model (1) has the marriage equilibrium point (MEP), which is denoted,
W4 = (M4, F4, G4), exits under biological condition (i.e. µ < r) and the following inequality;

dM

dG
= −∂f1/∂M

∂f1/∂G
< 0,

dM

dG
= −∂f2/∂M

∂f2/∂G
> 0,

(5)

where

F4 =
G4(1 + nG4)(β + µ)

α3M4
. (6)

Also, (M4, G4) is a positive root to the following two isoclines

f1(M4, G4) =2rM2 − 2rKM − 2nrKMG+ 2nrM2G+ βKG+ nβKG2

+ 2µKM + 2nµKMG+
2α1KG(1 + nG)(β + µ)

α3
= 0,

f2(M4, G4) =βKG+ nβKG2 +
2s(1 + nG)2(βG+ µG)2

α2
3M

2
(1 + nG)

− 2sKG(1 + nG)(β + µ)

α3M
(s− µ)− 2nKG2(1 + nG)(β + µ)

α3M
(s− µ)

+
2α2KG(1 + nG)(β + µ)

α3
= 0.

(7)
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Now, if G → 0, Equation (7) can be reduced to
f1(M4, 0) = 2M(rM + µK − rK) = 0,

f2(M4, 0) = 0.
(8)

Clearly, from the 1st equation of (8), we have a unique positive root that given by

M4 =
K(r − µ)

r
, (9)

while, the 2nd equation has zero root. Therefore, the all conditions given in Equation (5)
with µ < r, guarantees the existence of the marriage equilibrium point (MEP). In the next
section, we discussed the local and global stability of all equilibrium points according to
calculate the Jacobian matrix.

4 Local and Global Analysis

Theorem 4.1. If the following conditions are hold, then the (SMEP) W1 is locally asymptotically stable.

rK < 2rM1 + µK,

s < (α2M1 + µ) ,

βα3M1 < 2 (s− α2M1 − µ) (β + γ) .

(10)

Proof. The Jacobian matrix associated to the model (1) at a given point (M,F,G) can be written
as follows:

J (M,F,G) =



r −
(
2rM

K
+

α1F

1 + nG
+ µ

)
− α1M

1 + nG

nα1MF

(1 + nG)2
+

β

2

− α2F

1 + nG
s−

(
2sF

K
+

α2M

1 + nG
+ µ

)
nα2MF

(1 + nG)2
+

β

2

α3F

1 + nG

α3M

1 + nG
−
(

nα3MF

(1 + nG)2
+ β + γ

)


.

(11)
Equation (11), evaluated at (SMEP) is given by:

J (M1, 0, 0) =


r −

(
2rM1

K
+ µ

)
−α1M1

β

2

0 s− (α2M1 + µ)
β

2

0 α3M1 −(β + γ)

 , (12)

which admits three distinguish eigenvalues, the first eigenvalue is λ1 = rK − (2rM1 + µK) and
two other eigenvalues corresponding to characteristic polynomial is calculated as follows

P1(λ) = λ2 +A1λ+A2,

where
A1 = −

(
s− α2M1 − µ− β − γ

)
,

A2 = −2
(
s− α2M1 − µ

)(
β + γ

)
− βα3M1.
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Thus, if the conditions (10) are hold, then the roots of P1(λ) have negative real parts. Then,
(SMEP) is locally asymptotically stable only if conditions (10). Otherwise, it is unstable.
Theorem 4.2. If the following conditions are hold, then the (SFEP) W2 is locally asymptotically stable.

sK < 2sF2 + µK,

r < (α1F2 + µ) ,

βα3F2 < 2 (r − α1F2 − µ) (β + γ) .

(13)

Proof. Equation (11), evaluated at (SFEP) is given by:

J (0, F2, 0) =


r − (α1F2 + µ) 0

β

2

−α2F2 s

(
1− 2F2

K

)
− µ

β

2

α3F2 0 −(β + γ)

 , (14)

which admits three distinguish eigenvalues, the first eigenvalue is λ1 = sK − (2sF2 + µK) and
two other eigenvalues corresponding to characteristic polynomial is calculated as follows

P2(λ) = λ2 +B1λ+B2,

where
B1 = − (r − α1F2 − µ− β − γ) ,

B2 = −2 (r − α1F2 − µ) (β + γ)− βα3F2.

Thus, if the conditions (13) are hold, then the roots ofP2(λ) have negative real parts. Then, (SFEP)
is locally asymptotically stable only if conditions (13). Otherwise, it is unstable.
Theorem 4.3. If the following conditions are hold, then the (MFEP) W3 is locally asymptotically stable.

cii < 0, i = 1, 2,

Max . {c12c21/c22, c13c31/c33} < c11 < c12c31/c32,

c23c32/c33 < c22 < c21c32/c31,

c12c23c31 + c13c21c32 < 2c11c22c33.

(15)

Proof. Equation (11), evaluated at (MFEP) is given by:

J (M3, F3, 0) = [cij ]3×3 , (16)

where
c11 = r

(
1− 2M3

K

)
− α1F3 − µ, c12 = −α1M3, c13 = nα1M3F3 +

β

2
,

c21 = −α2F3, c22 = s

(
1− 2F3

K

)
− α2M3 − µ, c23 = α2M3F3 +

β

2
,

c31 = α3F3, c32 = α3M3, c33 = −(nα3M3F3 + β + γ).

Now, we have three distinguish eigenvalues, so the corresponding to characteristic polynomial is
calculated as follows

P3(λ) = λ3 + C1λ
2 + C2λ+ C3,
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where
C1 =− (c11 + c22 + c33) ,

C2 =c11c22 + c33 (c11 + c22)− (c12c21 + c13c31 + c23c32) ,

C3 =− c33(c11c22 − c12c21) + c13(c22c31 − c21c32) + c23(c11c32 − c12c31),

C1C2 − C3 =(c11 + c22)(c12c21 − c11c22) + (c11 + c33)(c13c31 − c11c33)

+ (c22 + c33)(c23c32 − c22c33)− 2c11c22c33 + c12c23c31 + c13c21c32.

Thus, if conditions (15) are hold and according to the Routh-Hurwitz criterion conditions
(i.e. Ci > 0; i = 1, 3 and C1C2 − C3 > 0), then the roots of P3(λ) have negative real parts. Then,
(MFEP) is locally asymptotically stable only if conditions (15). Otherwise, it is unstable.
Theorem 4.4. If the following conditions are hold, then the (MEP)W4 is locally asymptotically stable.

dii < 0, i = 1, 2,

Max. {d12d21/d22, d13d31/d33} < d11 < d12d31/d32,

d23d32/d33 < d22 < d21d32/d31,

d12d23d31 + d13d21d32 < 2d11d22d33.

(17)

Proof. Equation (11), evaluated at (MEP) is given by:
J (M4, F4, G4) = [dij ]3×3 , (18)

where

d11 = r

(
1− 2M4

K

)
− α1F4

1 + nG4
− µ, d12 = − α1M4

1 + nG4
, d13 =

nα1M4F4

(1 + nG4)2
+

β

2
,

d21 = − α2F4

1 + nG4
, d22 = s(1− 2F4

K
)− α2M4

1 + nG4
− µ, d23 =

nα2M4F4

(1 + nG4)2
+

β

2
,

d31 =
α3F4

1 + nG4
, d32 =

α3M4

1 + nG4
, d33 = −(

nα3M4F4

(1 + nG4)2
+ β + γ).

Now, we have three distinguish eigenvalues, so the corresponding to characteristic polynomial is
calculated as follows

P4(λ) = λ3 +D1λ
2 +D2λ+D3,

where
D1 =− (d11 + d22 + d33) ,

D2 =d11d22 + d33 (d11 + d22)− (d12d21 + d13d31 + d23d32) ,

D3 =− d33(d11d22 − d12d21) + d13(d22d31 − d21d32) + d23(d11d32 − d12d31),

D1D2 −D3 =(d11 + d22)(d12d21 − d11d22) + (d11 + d33)(d13d31 − d11d33)

+ (d22 + d33)(d23d32 − d22d33)− 2d11d22d33 + d12d23d31 + d13d21d32.

Thus, if conditions (16) are hold and according to theRouth-Hurwitz criterion conditions (i.e. Di >
0; i = 1, 3 and D1D2 −D3 > 0), then the roots of P4(λ) have negative real parts. Then, (MEP) is
locally asymptotically stable only if conditions (16). Otherwise, it is unstable.

Next, the following theorems are interested with the model’s global dynamics (1). The at-
tractive basin of trajectories of a dynamical model (1), according to global stability, is either the
state-space or the interior of the state-space that determines the system’s state variables. In other
words, global stability implies that, regardless of the initial conditions, all paths eventually drift to
the system’s attractor. Global stability is required by most biological, ecological or social systems.
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Theorem 4.5. The SMEP is globally asymptotically stable under the following requirement holds.

α3 + α1M1 < α2,

2βG+ sK < 4µF,

rK < r(M +M1) + µ.

(19)

Proof. Let define the function V1(M,F,G) =
(M −M1)

2

2
+F +G, which is a positive definite real

valued function on the region Ω1 = (M,F,G) ∈ R3
+ :M > 0, F ≥ 0, G ≥ 0. Then, after simplify it

by some direct calculations, we have

dV1

dt
=−

[ r
K

(M +M1)− (r − µ)
]
(M −M1)

2 −
[
α2 − (α3 + α1M1)

1 + nG

]
MF − µF

− (M −M1)
βG

2
+ (1− F

K
)sF −

[
(µ+ β + γ)− β

2

]
G.

Further simplification leads to:

dV1

dt
≤−

[ r
K

(M +M1)− (r − µ)
]
(M −M1)

2 −
[
α2 − (α3 + α1M1)

1 + nG

]
MF − µF

+
βGM1

2
+

sK

4
−
[
(µ+ β + γ)− β

2

]
G.

Clearly, dV1/dt is negative definite under conditions (19). Hence, the SMEP is GAS.
Theorem 4.6. The SFEP is globally asymptotically stable under the following requirement holds.

α3 + α2F2 < α1,

rK + 2βGF2 < 4µM,

sK < s(F + F2) + µ.

(20)

Proof. Let define the function V2(M,F,G) = M + (F−F2)
2

2 + G, which is a positive definite real
valued function on the region Ω2 = (M,F,G) ∈ R3

+ :M ≥ 0, F > 0, G ≥ 0. Then, after simplify it
by some direct calculations, we have

dV2

dt
=rM(1− M

K
)−

[
α1 − (α3 + α2F2)

1 + nG

]
MF − µM − (F − F2)

βG

2

−
[ s
K

(F + F2) + µ− s
]
(F − F2)

2 −
[
(β + γ)− β

2

]
G.

Further simplification leads to:

dV2

dt
≤rK

4
−
[
α1 − (α3 + α2F2)

1 + nG

]
MF − µM +

βGF2

2

−
[ s
K

(F + F2) + µ− s
]
(F − F2)

2 −
[
(β + γ)− β

2

]
G.

Now, we have dV2/dt is negative definite under conditions (20). Hence, the SFEP is GAS.
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Theorem 4.7. The MFEP is globally asymptotically stable under the following requirement holds.

q11 < 0,

q22 < 0,

q212 < 4q11q22,

Max. {q⋆1 , q⋆2} < q⋆3 .

(21)

Proof. Let define the function V3(M,F,G) =
(M −M3)

2

2
+

(F − F3)
2

2
+ G, which is a positive

definite real valued function on the region Ω3 = (M,F,G) ∈ R3
+ : M > 0, F > 0, G ≥ 0. Then,

after simplify it by some direct calculations, we have

dV3

dt
=(M −M3)

[
rM(1− M

K
)− α1MF

1 + nG
+

βG

2
− µM

]
+ (F − F3)

[
sF (1− F

K
)− α2MF

1 + nG
+

βG

2
− µF

]
+

α3MF

1 + nG
− (β + γ)G.

Further simplification leads to:
dV3

dt
=− q11(M −M3)

2 − q12(M −M3)(F − F3)− q22(F − F3)
2

+ q⋆1(M −M3) + q⋆2(F − F3)− q⋆3G,

where

q11 =
r

K
(M +M3) + µ+

α1

1 + nG
− r,

q22 =
s

K
(F + F3) + µ+

α2M3

1 + nG
− s,

q12 =
α1M3

1 + nG
+

α2F

1 + nG
,

q⋆1 =

[
nα1M3F3G

1 + nG
+

βG

2
+

α3F

1 + nG

]
,

q⋆2 =

[
nα2M3F3G

1 + nG
+

βG

2
+

α3M3

1 + nG

]
,

q⋆3 =

[
nα3M3F3G

1 + nG
+ β + γ

]
.

Thus, dV3/dt ≤ 0, under conditions (21). Hence, the MFEP is GAS.
Theorem 4.8. The MEP is globally asymptotically stable under the following requirement holds.[

2− M

M4
− M4

M

]
≤ 0,[

2− F

F4
− F4

F

]
≤ 0,[

2− G

G4
− G4

G

]
≤ 0.

(22)
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Proof. Let define the function V4(M,F,G) =
∫M

M4
(1−M4

x )dx+
∫ F

F4
(1− F4

x )dx+
∫ G

G4
(1−G4

x )dx, which
is a positive definite real valued function on the regionΩ4 = (M,F,G) ∈ R3

+ : M > 0, F > 0, G > 0.
Then, after simplify it by some direct calculations, we have(
1− M4

M

)
dM

dt
= µM4

[
2− M

M4
− M4

M

]
+ rM4

[
2− M

M4
− M4

M

]
+

rM2
4

K

[
1− M4

M
+

M

M4

(
1− M

M4

)]
+

βG4

2

[
1− G

G4
+

GM4

G4M

(
1− G4

G

)]
+

α1M4F4

1 + nG4

[
1− M4

M
+

F (1 + nG4)

F4(1 + nG)

(
1− M

M4

)]
,(

1− F4

F

)
dF

dt
= µF4

[
2− F

F4
− F4

F

]
+ SF4

[
2− F

F4
− F4

F

]
+

sF 2
4

K

[
1− F4

F
+

F

F4

(
1− F

F4

)]
+

βG4

2

[
1− G

G4
+

GF4

G4F

(
1− G4

G

)]
+

α2M4F4

1 + nG4

[
1− F4

F
+

M(1 + nG4)

M4(1 + nG)

(
1− F

F4

)]
,(

1− G4

G

)
dG

dt
= (β + γ)G4

[
2− G

G4
− G4

G

]
+

α3M4F4

1 + nG4

[
1− G4

G
+

MFG4(1 + nG4)

M4F4G(1 + nG)

(
1− G4

G

)]
.

Thus, if M = M4, F = F4 and G = G4, we get the dV4/dt ≤ 0, under conditions (22). Hence, the
MEP is GAS.

5 Bifurcation Analysis of Model (1)

There aremany types of bifurcation that occur as a result of change in the qualitative behaviour
of the equilibrium points are explored in this section. We show that the model (1) goes through
pitch-fork bifurcation, saddle-node bifurcation and transcritical bifurcation, all of which are local
bifurcations in co-dimension one.
Theorem 5.1. Model (1) has a saddle-node bifurcation near the W4, (MEP), but neither transcritical
bifurcation, nor pitchfork bifurcation for the parameter γ and the threshold value is γ = γ∗.

Proof. The occurrence of a saddle-node bifurcation at the bifurcation parameter γ = γ∗ is con-
firmed by using Sotomayor’s theorem [12]. Provided that the following conditions are met:

γ∗ > 0,

φ3 (l1c
∗
11 + l2c

∗
21 + c∗31) ̸= 0,

(23)

where
γ∗ =

d13 (d21d32 − d22d31) + d23 (d12d31 − d11d32)

d11d22 − d12d21
−
(
nα3M4F4

1 + nG4
+ β

)
.

Now, the Jacobian matrix for model (1) about the equilibrium point (MEP) and γ = γ∗ has
a zero eigenvalue, say λ4 = 0 and as such, the W4 becomes a non-hyperbolic point. Let v =

(k1v3, k2v3, v3)
T and φ = (l1φ3, l2φ3, φ3)

T be eigenvectors of the Jacobian JW4 and its transpose
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matrix JT
W4

, corresponding to the zero eigenvalue λ4, respectively, where

k1 =
d12(d11d23 − d21d13)

d11(d11d22 − d12d21)
+

d13
d11

,

k2 =
d13d21 − d11d23
d11d22 − d12d21

,

l1 =
d21(d11d32 − d21d31)

d11(d11d22 − d12d21)
,

l2 =
d12d31 − d11d32
d11d22 − d12d21

.

Then, we have
∂

∂γ
F (x, γ) =(0, 0,−G)T ,

Fγ(W4, γ
∗) =(0, 0,−G4)

T ⇒ φTFγ(W4, γ
∗) = −φ3G4,

φT
[
D2F (W4, γ

∗)(v, v)
]
=φ3 (l1c

∗
11 + l2c

∗
21 + c∗31) ,

where
c∗11 =− 2v23

[
rk1
K

+
α1k1k2
1 + nG4

+
nα1F4k1

(1 + nG4)2
+

nα1k2M4

(1 + nG4)2

]
,

c∗21 =− 2v23

[
α2k1k2
1 + nG4

+
sk2
K

+
nα2k1F4

(1 + nG4)2
+

nα2k2M4

(1 + nG4)2

]
,

c∗31 =2v23

[
α3k1k2
1 + nG4

− nα3k1k2
(1 + nG4)2

− nα3k2M4

(1 + nG4)2
+

n2α3M4F4

(1 + nG4)2

]
.

If the conditions (23), are hold. Then, all transversality conditions are satisfied, i.e. when γ = γ∗,
the saddle-node bifurcation occurs at W4.
Theorem 5.2. Model (1) has a transcritical bifurcation near the W3, (MFEP), but neither saddle-node
bifurcation, nor pitchfork bifurcation for the parameter γ and the threshold value is γ = γ⋆.

Proof. The occurrence of a transcritical bifurcation at the bifurcation parameter γ = γ⋆ is con-
firmed by using Sotomayor’s theorem [12]. Provided that the following conditions are met:

γ⋆ > 0,

φ⋆
1 (c

⋆
11 + l⋆1c

⋆
21 + l⋆2c

⋆
31) ̸= 0,

(24)

where
γ⋆ =

c13 (c22c31 − c21c32) + c23 (c11c32 − c12c31)

c12c21 − c11c22
− (nα3M3F3 + β) .

Now, the Jacobian matrix for model (1) about the equilibrium point (MFEP) and γ = γ⋆ has
a zero eigenvalue, say λ3 = 0 and as such, the W3 becomes a non-hyperbolic point. Let v⋆ =

(k⋆1v
⋆
2 , v

⋆
2 , k

⋆
2v

⋆
2)

T and φ⋆ = (φ⋆
1, l

⋆
1φ

⋆
1, l

⋆
2φ

⋆
1)

T be eigenvectors of the Jacobian JW3
and its transpose
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matrix JT
W3

, corresponding to the zero eigenvalue λ3, respectively, where

k⋆1 =
c13c22 − c12c23
c11c23 − c21c13

,

k⋆2 =
c12c21 − c11c22
c11c23 − c13c21

,

l⋆1 =
c31c13 − c11c33
c33c21 − c23c31

,

l⋆2 =
c11c23 − c13c21
c33c21 − c23c31

.

(25)

Then, we have
∂

∂γ
F (x, γ) =(0, 0,−G)T , (26)

Fγ(W3, γ
⋆) =(0, 0, 0)T ⇒ φ⋆T

Fγ(W3, γ
⋆) = 0, (27)

φ⋆T

DFγ(W3, γ
⋆)v⋆ =− k⋆2 l

⋆
2φ

⋆
1v

⋆
2 ̸= 0, (28)

φ⋆T [
D2F (W3, γ

⋆)(v⋆, v⋆)
]
=φ⋆

1 (c
⋆
11 + l⋆1c

⋆
21 + l⋆2c

⋆
31) , (29)

where

c⋆11 =− 2k⋆1v
⋆2

2

[
k⋆1
2

(
2r

K
+ 1

)
+ α1 +

α1n
2M3F3k

⋆2

2

k⋆1
− nα1k

⋆
2

(
F3 +

M3

k⋆1

)]
, (30)

c⋆21 =− 2k⋆1 l
⋆
1v

⋆2

2

[
α2 +

α2n
2M3F3k

⋆2

2

k⋆1
+

s

Kk⋆1
− nα2k

⋆
2

(
F3 +

M3

k⋆1

)]
, (31)

c⋆31 =− 2α3k
⋆
1 l

⋆
2v

⋆2

2

[
nk⋆2F3 +

nk⋆2M3

k⋆1
−

(
1 +

n2k⋆
2

2 M3F3

k⋆1

)]
. (32)

If the conditions (24), are hold. Then, all transversality conditions are satisfied, i.e. when γ = γ⋆,
the transcritical bifurcation occurs at W3.

6 Numerical Simulation

Now, we perform some practical simulations by using Matlab software. The authors used
number of sets to perform the graphs. In our simulations, we are used sets of parameters values
are given in Table 2 from various sets of initial values.
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Table 2: Values of the model parameters.

Parameter Value
r 1
s 0.9
β 0.03
K 25
n 100
α1 0.9
α2 0.7
α3 0.5
µ 0.01
γ 0.001

According to Figure 2, model (1) has a unique MEP in MFG-space, which is GAS.
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Figure 2: Simulation results of the global stability of the marriage equilibrium point.

Now, a numerical investigation of the effects of changing the parameters on the dynamics of
model (1) is conducted. Thus, we get the following scenarios:

• Scenario 1: If we put α1 = 0.1 and α3 = 0.001 and keeping the other parameters value
of Table 2. In this case, the dynamical behavior of model (1) converges to the SMEP from
different initial values. This result is plotted by Figure 3.
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Figure 3: Simulation results of the global stability of the single males equilibrium point when α1 = 0.1 and α3 = 0.001.

• Scenario 2: If we put α2 = 0.1 and α3 = 0.001 and keeping the other parameters value
of Table 2. In this case, the dynamical behavior of model (1) converges to the SFEP from
different initial values. This result is plotted by Figure 4.
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Figure 4: Simulation results of the global stability of the single females equilibrium point when α2 = 0.1 and α3 = 0.001.
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• Scenario 3: If we put α3 = 0.001, β = 0.8 and n = 8000 and keeping the other parameters
value of Table 2. In this case, the dynamical behavior of model (1) converges to the MFEP
from different initial values. This result is plotted by Figure 5.
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Figure 5: Simulation results of the global stability of the marriage-free equilibrium point when α3 = 0.001, β = 0.8 and n = 8000.

• Scenario 4: Obviously, Figure 6 shows clearly the bifurcation occur of the dynamical behavior
of model (1) from the marriage equilibrium point W4 became unstable to single females
equilibriumpointW2 when themarriage rateα3 is decreasing. While, we get the same results
in Figure 6 if the decay rate γ is increasing see Figure 7.
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Figure 6: Simulation results of the dynamical behavior of model (1) when α3 = 0.4, 0.002 respectively.
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Figure 7: Simulation results of the dynamical behavior of model (1) when γ = 0.1, 0.5 respectively.
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7 Conclusions

In this paper, we have proposed and studied a socialmodel of themarriage relationships under
fear effect with nonlinear incidence rate. We discussed the stability of the equilibrium points (the
single males equilibrium point W1, the single females equilibrium point W2, the marriage-free
equilibrium pointW3 and the marriage equilibrium pointW4). W1 is locally asymptotically stable
once the conditions 10 are hold andW2 is locally asymptotically stable under the conditions 13 are
hold as well as W3 is locally asymptotically stable under the conditions 15 are hold, also, the last
point W4 is locally asymptotically stable if the conditions 17 are satisfied. Later, we studied the
global stability of all equilibrium points of model (1) with help Lyapunov function. As the decay
of the marriage rate γ is increasing through the equilibrium point W4, the differential-algebraic
model behavior goes to pitch-fork bifurcation and the stability of W4 is lost. Due to the increase
in divorce cases over time and thus the number of males decreases, this means that itW2 is stable.
Finally, some numerical simulations that support the obtained analytical results are given. The
delay effect or fractional order remains an open problem for this model. This open problem will
be investigated in our future research.
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